Pelvic organ prolapse (POP) is a common condition in women. Many women are living longer and have a high expectation for quality of life beyond menopause including an active lifestyle and the capacity for sexual activity. Data from the U.S. National Hospital Discharge Survey reported that approximately 200,000 women undergo surgery for POP annually. Pelvic organ prolapse is the surgical indication for approximately 7–14% of all hysterectomies for benign disease. The prevalence of POP is expected to increase substantially in the coming decades. The annual number of corrective surgeries and related health care costs will likely increase as well.

The exact causes of POP are unknown and are likely multifactorial. Prolapse can result when defective genital support responds to normal intra-abdominal pressure or when normal pelvic organ supports are subjected chronically to high intra-abdominal pressure. This loss of support occurs as a result of damage to any of the pelvic supportive systems, including the bony pelvis, to which the soft tissues ultimately attach; the subperitoneal retinaculum and smooth muscle component of the endopelvic fascia (the cardinal and uterosacral ligament complex); the pelvic diaphragm, with the levator ani muscles and their fibromuscular attachments to the pelvic organs; and the perineal membrane. The perineal body and the walls of the vagina can also weaken from stretching during childbirth, attenuating changes of aging and menopause, and from genetic and other factors.

Risk factors for the development of prolapse can be classified as predisposing, inciting, promoting, or...
Predisposing factors are genetics, race, and gender that might result in connective tissue defects; inciting factors are pregnancy, childbirth, and surgery such as hysterectomy for prolapse, myopathy, and neuropathy. Promoting factors include obesity, smoking, pulmonary disease, constipation and chronic straining, and recreational or occupational activities; and decompensating factors are aging, menopause, debilitation, and medications. Depending on the combination of risk factors in an individual, prolapse may or may not develop over her lifetime. Advancing age, vaginal childbirth, and obesity are the most established risk factors. Both the Oxford Family Planning Study and the Women's Health Initiative showed that vaginal parity was a strong risk factor for POP. The Women's Health Initiative noted that single childbirth was associated with an increased risk of uterine prolapse, and every additional delivery up to five births increased the risk of prolapse by 10–20%. Established and potential risk factors for POP are shown in Box 1.

The management of POP can be difficult. Several support defects often coexist, and simple anatomic correction of the various defects does not always result in normal function of the vagina and surrounding organs. Studies demonstrate that a significant proportion of anterior vaginal wall prolapse can be attributed to the descent of the vaginal apex, which clarifies why apical prolapse procedures are critical to correct vaginal prolapse. The pelvic surgeon must thoroughly understand the interplay of normal and abnormal anatomic support and physiologic function of the pelvic musculature, vagina, bladder, and rectum. The goals of reconstructive pelvic surgery are to restore anatomy, maintain or restore normal bowel and bladder function, and maintain vaginal capacity for sexual intercourse, if desired.

This article discusses the surgical correction of posthysterectomy vaginal apex prolapse and uterovaginal prolapse. We do not directly discuss prolapse of the anterior and posterior vaginal walls (cystocele and rectocele), nor do we address treatment of bladder and anal disorders, which are beyond the scope of this discussion.

DIAGNOSIS AND EXAMINATION

The diagnosis of POP is made using a combination of history and physical examination. Because a majority of women, especially those who are parous, have some degree of pelvic relaxation, it is vital to decipher if women who have prolapse are symptomatic. These symptoms typically include vaginal bulge, pressure, discomfort as well as functional symptoms such as difficulty voiding or defecating, and sexual dysfunction. The simple question, “Do you usually have a bulge or something falling out that you can see or feel in your vaginal area?” is 96% sensitive and 79% specific for prolapse beyond the hymen when used in a pelvic floor disorders population. Because many cases of POP do not require surgical management, inquiring whether the symptoms of prolapse are bothersome may be helpful in guiding treatment choices.

The physical examination for prolapse should be conducted with the patient in the dorsal lithotomy position. If physical findings do not correspond with symptoms, or if the maximum extent of prolapse cannot be confirmed, the woman can be reexamined in the standing position. A general gynecologic examination is performed to evaluate for coexisting pathology. Levator ani muscle contraction and strength should be noted. After the resting vaginal examination, the patient is instructed to perform a Valsalva maneuver or to cough vigorously to increase the intra-abdominal pressure, which will elicit the physical finding of prolapse. Each vaginal compartment, including the proximal urethra, anterior vaginal wall, vaginal apex or cervix, cul de sac, posterior vaginal wall, and perineum, should be evaluated separately.
The pelvic organ prolapse quantification (POP-Q) examination is validated, has been studied extensively, and allows accurate communication between health care providers and in research protocols.

Using the hymen as a reference point, the POP-Q examination records the genital hiatus length, the perineal body length, the total vaginal length, the amount of cervical or vaginal apex prolapse, and the amount of prolapse of the anterior and posterior vaginal walls. With the exception of total vaginal length, all measurements are taken while the patient is performing a Valsalva maneuver. A split speculum examination is helpful in delineating the individual compartment measurements. For example, half of a speculum is placed over the posterior vaginal wall while the patient bears down so that the anterior vaginal wall prolapse can be accurately measured. For everyday practice, evaluating the maximal amount of prolapse of each compartment (using the hymen as a reference point) may suffice to make surgical decisions and allow accurate communication between health care providers. A rectal examination is required to fully evaluate prolapse of the posterior vaginal wall and perineal body.

Making the diagnosis of vaginal apex prolapse can be challenging in some cases because most patients with apical prolapse also have anterior, posterior, or anterior and posterior vaginal wall prolapse. Identifying the vaginal apex by visualizing the hysterecotomy scar can be helpful. Also, placing the examiner’s fingers at the apex while the patient is performing a Valsalva maneuver can help confirm the speculum examination findings. Making the correct diagnosis of apical prolapse is tantamount because surgical decision-making often hinges on this finding.

Historically, the terms cystocele, rectocele, and enterocele were used to describe prolapse. However, these terms are less favorable because they imply an unrealistic certainty as to the specific organs behind the vaginal wall. Figure 1 demonstrates the importance of a systematic examination to determine pelvic support defects and illustrates how different types of prolapse can have somewhat similar appearances externally. Enterocele (protrusion of the small intestines and peritoneum into the vaginal canal) is not typically treated as a separate disorder because most patients with enterocele also have significant prolapse of other compartments. An isolated enterocele repair rarely corrects all prolapse symptoms and usually additional support procedures are needed. Preferred terminologies include uterine or cervical prolapse, vaginal vault or apical prolapse, anterior vaginal wall prolapse, and posterior vaginal wall prolapse.

Ancillary studies such as imaging do not often contribute to the diagnosis or treatment of POP. Interesting anatomic information can be gleaned from pelvic magnetic resonance imaging or ultrasonography, but this has not been shown to lead to improved treatment outcomes. Radiologic studies such as defecography can aid in the diagnosis and treatment of women with prolapse and defecation disorders.

Many women with POP have urinary incontinence. Those who do not have incontinence are at risk for de novo stress urinary incontinence when their prolapse is corrected. De novo stress urinary incontinence occurs when a previously continent patient develops symptoms of stress urinary incontinence after prolapse repair. This occurs because the previously obstructed urethrovesical junction is straightened by elevating the vaginal apex and anterior vaginal wall, thus unmasking occult stress urinary incontinence. Adding an anti-incontinence procedure at the time of prolapse repair significantly reduces the incidence of stress urinary incontinence. Preoperative office testing helps to decide this issue. Patients with a positive standing cough stress test with a full bladder and the prolapse reduced most likely benefit from a concomitant anti-incontinence procedure. The results of this test are used to counsel the patient preoperatively regarding adding a concomitant anti-incontinence procedure as well as risks of postoperative stress urinary incontinence, sling complications, and postoperative urinary retention.

SELECTING THE TYPE OF SURGERY FOR PELVIC ORGAN PROLAPSE

Women presenting with bothersome POP have a number of treatment options. A careful discussion of the condition and its relationship to bladder, vaginal, and anorectal function should take place. Treatment options include observation, conservative treatments, and surgery. Conservative treatments such as intensive pelvic muscle (Kegel) exercises and pessaries should be offered. Vaginal estrogen may improve symptoms of atrophy and some of the urinary symptoms but will not improve the structural problems related to prolapse. After careful counseling, and if the patient no longer is improved by or does not desire conservative therapies, then surgical correction should be considered.

We believe surgical treatment of POP should always address all of the segments of the vagina that are involved in the prolapse and an attempt should be made to improve related visceral function of the lower urinary tract, vagina, and anorectum. Transvaginal hysterectomy alone (without apical prolapse repair) is
not an appropriate operation to treat significant uterovaginal prolapse. Once the patient elects surgery, the surgeon and patient have a number of issues to consider: 1) Is the patient sexually active and is she interested in having vaginal intercourse in the future? 2) If the uterus is present, should a hysterectomy be done at the time of her prolapse repair? 3) Should the prolapse repair be done through the transvaginal or abdominal route and, if abdominally, should it be done using laparotomy, laparoscopy, or robotic assistance? 4) Can the prolapse surgery be done by repairing the patient’s own native tissues or is a graft necessary to suspend the apex or other segments of the vaginal walls? 5) Is a concurrent procedure to correct overt or occult stress urinary incontinence necessary? 6) Should I refer this surgery to a specialist in Female Pelvic Medicine and Reconstructive Surgery? A discussion of these questions is provided in Box 4.

PREOPERATIVE CONSIDERATIONS

We recommend starting vaginal estrogen in postmenopausal women with vaginal atrophy at least 4–6 weeks before surgery for prolapse. Tissue integrity improves with estrogen and this may provide clinical benefits to
the patient. No studies have been done, however, showing improved outcomes by using estrogen before, after, or before and after prolapse surgery.13

Informed consent should be methodical; it is a process rather than a single event. In addition to discussing the usual risks encountered in a major operation (infection, hemorrhage, injury to adjacent organs, and medical and anesthesia complications), a frank conversation should take place regarding the expected outcomes, the likelihood of prolapse recurrence, the potential of urinary incontinence, and the possibility of dyspareunia. Additionally, if the use of a mesh or graft is planned, delineating the unique set of risks related to these procedures is prudent (Box 1).

All patients require perioperative prophylactic antibiotics and efforts to prevent venous thromboembolic events. Antibiotics should be given within 60 minutes of incision to achieve minimal inhibitory concentrations in the skin and tissues by the time the incision is made. This typically means a first-generation cephalosporin (cefazolin) or combination regimens (500 mg metronidazole and 400 mg ciprofloxacin) if the patient has an allergy to penicillin.15 In general, all patients undergoing apical prolapse surgery are at moderate risk for thromboembolic events and require a prevention strategy.16 Low-dose unfractionated heparin (5,000 units every 12 hours) or low-molecular-weight heparins (eg, 40 mg enoxaparin or 2,500 units of dalteparin), an intermittent pneumatic compression device, or a combination of these are recommended. Either form of heparin should be started 2 hours before surgery and the compression stockings placed on the patient in the operating room before incision. These treatment approaches should be continued until the patient is ambulatory.

The value of preoperative bowel preparation has been challenged in a meta-analysis.17 Additionally, mechanical bowel preparations may increase harm by causing relative dehydration and potential contamination of the surgical field with liquid stool. Therefore, except in unusual circumstances in which bowel surgery is planned, we do not recommend bowel preparation before surgeries for POP.

TRANSVAGINAL PROCEDURES THAT SUSPEND THE APEX WITHOUT A GRAFT

All of the transvaginal surgeries are done in the supine lithotomy position with the legs elevated in either high cane stirrups or in Allen stirrups. Leg elevation with the buttocks at the end of the table facilitates deep vaginal surgery and the use of two surgical assistants. However, care should be taken to not flex the hips to beyond 90° to keep the risk of nerve compression injury as low as possible. Which transvaginal support procedure to use tends to be based on the training and expertise of the operating gynecologist. The concurrent use of vaginal hysterectomy, the shape and depth of the vagina, and the severity of the prolapse also influence the surgeon somewhat. Few data are available comparing the transvaginal repairs for efficacy.

Modified McCall Culdoplasty

When mild forms of uterovaginal prolapse are present, vaginal hysterectomy and culdoplasty with appropriate vaginal repairs are usually sufficient to relieve the patient’s symptoms and restore normal vaginal function. Suturing the uterosacral ligaments more proximally, the so-called “high McCall” procedure, is used by some vaginal surgeons in place of the uterosacral ligament colpopexy. Addition of a McCall culdoplasty is also effective for prophylaxis against future vaginal apical prolapse.18 The advantage of the McCall culdoplasty is that it not only closes the redundant cul-de-sac and associated enterocele, but it also provides apical support and lengthening of the vagina. Many authorities advocate using this procedure as part of every vaginal hysterectomy, even in the absence of prolapse, to minimize future formation of apical prolapse.

The technique of this repair is as follows: 1) After the vaginal hysterectomy, the uterosacral ligaments are tagged, held, and placed under tension. The deep cul-de-sac is palpated and excised if very large; 2) one to three modified McCall stitches are placed intraperitoneally with a permanent suture. Each suture incorporates the left distal uterosacral ligament, the cul-de-sac peritoneum over the rectum, and the right distal uterosacral ligament. An additional distal suture is placed using delayed absorbable suture, and the ends are passed through the midline of the posterior vaginal wall (Fig. 2); and 3) sutures are then tied, resulting in fixation of the vaginal apex to the distal portion of the endopelvic fascia as well as high closure of the cul-de-sac peritoneum. When there is excessive redundancy of the posterior vaginal wall and peritoneum, a modification of the McCall culdoplasty in which a wedge of posterior vaginal wall and peritoneum are excised can be considered.

Sacropinous Ligament and Ileococcygeus Colpopexy

To perform these procedures correctly and safely, the surgeon must be familiar with pararectal anatomy as well as the anatomy of the ischial spine, ileococcygeus and coccygeus muscles, sacrospinous ligament, and surrounding vascular and nerve structures (Fig. 3). The sacrospinous ligaments extend from the ischial spines on each side to the lower portion of the sacrum and coccyx. The fibromuscular coccygeus muscle and
sacrospinous ligament are basically the same structure and thus can be called the coccygeus–sacrospinous ligament. The coccygeus muscle has a large fibrous component in the body of the muscle and on the anterior surface, where it appears as white ridges. The coccygeus–sacrospinous ligament is identified by palpating the ischial spine and tracing the flat triangular thickening medial and posterior to the sacrum.

Posterior to the coccygeus–sacrospinous ligament are the gluteus maximus muscle and the fat of the ischiorectal fossa. The pudendal nerves and vessels lie lateral and directly posterior to the ischial spine. The sciatic nerve lies superior and lateral. Superiorly and behind the coccygeus–sacrospinous ligament lies an abundant vascular supply that includes inferior gluteal vessels and hypogastric venous plexus.

Before the sacrospinous ligament colpectomy is initiated, one should have preoperatively recognized the ischial spines and coccygeus–sacrospinous ligament on pelvic examination. The sacrospinous ligament colpectomy is done for moderate-to-severe posthysterectomy apical prolapse; it can also be done with simultaneous vaginal hysterectomy or even as a hysteropexy. We usually perform the apical suspension unilaterally to the right coccygeus–sacrospinous ligament, but surgeons occasionally use the left coccygeus–sacrospinous ligament or do a bilateral suspension. The performance of this operation usually requires simultaneous correction of the anterior and posterior vaginal walls and an enterocele repair. Placing the prolapsed vaginal apex to the sacrospinous ligament to see whether the vagina is long enough to complete the repair and whether the anterior and posterior vaginal wall prolapse disappears helps to determine whether cystocele and rectocele repairs are needed. The patient should be routinely consented for these repairs because many times it is difficult to discern the extent of the various defects in the office.

The technique of unilateral sacrospinous colpopexy is as follows: 1) if the uterus is present, a vaginal hysterectomy is done and the peritoneum closed to perform an extraperitoneal approach. Sacrospinous cervicopexy or hysteropexy could also be done if desired using similar technique; 2) the apex of the vagina is grasped with two Allis clamps. Downward traction is used to determine the extent of prolapse of...
the apex, anterior, and posterior vaginal walls. The vaginal apex is then reduced to the sacrospinous ligament intended to be used. At times the true apex of the vagina at the hysterectomy scar is foreshortened and will not reach the intended area of fixation, like with a shortened anterior vaginal wall and a prominent posterior enterocele. The “new” apex should be moved to a portion of the vaginal wall over the most severe prolapse, thus allowing sufficient vaginal length for suspension to the coccygeus–sacrospinous ligament. The intended apex is tagged with two sutures for its later identification; 3) access to the coccygeus–sacrospinous ligament can be through a posterior vaginal dissection, through the apex, or by an anterior approach dissecting at the base of a paravaginal dissection. In the posterior approach, a midline posterior vaginal wall incision is made just short of the apex of the vagina, leaving a small vaginal bridge approximately 3 or 4 cm wide. In the majority of cases, an enterocele sac is present. This sac should be dissected off the rectum and posterior vaginal wall and apex, the peritoneum entered, and the sac closed with a high pursestring suture; 4) the perirectal space or the space along the peritoneum near the apex is then entered by breaking through the areolar tissue just lateral to the enterocele sac at the level of the ischial spine. This can usually be accomplished with blunt dissection after mobilizing the rectum medially. At times, however, the use of gauze on the index finger or a tonsil clamp is necessary to break into this space; 5) after entry into the perirectal space, palpate the ischial spine and, with dorsal and medial movement of the fingers, the entire coccygeus–sacrospinous ligament. Blunt dissection is used to further remove tissue from this area. The surgeon should take great care to ensure that the rectum is adequately retracted medially. At this time, we recommend performing a rectal examination to ensure that no inadvertent rectal injury has occurred; 6) several techniques are used for the actual passage of sutures through the ligament. Our preferred technique for passing the sutures through the coccygeus–sacrospinous ligament uses a transvaginal suture-capturing device (Fig. 4A). The proposed advantage of this technique is that it is safer and easier because the device enters the coccygeus–sacrospinous ligament under direct palpation of distinct landmarks, proceeding top to bottom, and is then pulled down into the safe perirectal space below. Other popular instruments to place the coccygeus–sacrospinous ligament sutures are the long-handled Deschamps ligature carrier and nerve hook, the Miya hook, and even direct suturing.

To perform this technique on the right, the left middle fingertip is placed on the coccygeus–sacrospinous ligament just below its superior margin, approximately 3 cm medial to the ischial spine or in the midposition of the coccygeus–sacrospinous ligament. A long retractor such as a Breisky-Navratil retractor can be placed medially to mobilize and

Fig. 4. Sacrospinous ligament colpocomy. A. Passage of transvaginal suture-capturing device with suture through the coccygeus–sacrospinous ligament. Note the needle tip is passed from above to downward. B. Three sutures are placed through the coccygeus–sacrospinous ligament; the middle suture is nonabsorbable so is through the muscularis and the knot buried. C. Final attachment of the vagina to the coccygeus–sacrospinous ligament. Illustration by Ross Papalardo. Reprinted with permission, Cleveland Clinic Center for Medical Art & Photography © 2010–2012. All rights reserved. Walters. Surgical Treatment of Vaginal Apex Prolapse. Obstet Gynecol 2013.
protect the rectum if needed. Great care should be taken when retracting in this area to prevent bleeding and nerve and rectal damage. The suture-capturing device, in the right hand in a closed position, is slid along the palmar surface of the left hand. With the tip of the middle finger, the suture-capturing device notch is placed 3 cm medial to the ischial spine, approximately 0.5 cm below the superior edge. With the middle and index fingers, apply firm pressure downward and engage the device at the handle so the needle passer penetrates the coccygeus–sacrospinous ligament (Fig. 4A). Release the handle and remove the device with the suture and tag the suture. Depending on the size of the ligament, most authorities place between two and four sutures through the coccygeus–sacrospinous ligament to attach to the vaginal apex (Fig. 4B). There is no consensus about suture type; a combination of delayed absorbable and nonabsorbable monofilament sutures is commonly used; 7) if the patient requires an anterior vaginal wall repair, we prefer performing an anterior colporrhaphy at this point in the operation; 8) the surgeon then brings the stitches out to the apex of the vagina, either with the use of a pulley stitch for permanent sutures or simply passing each pair of sutures through the apex for delayed absorbable sutures (Fig. 4B). After the sutures have been brought out through the vagina, the upper portion of the posterior vaginal wall is closed with continuous No. 2-0 absorbable sutures. The vaginal apex suspension stitches then are tied, thus elevating the apex of the vagina to the coccygeus–sacrospinous ligament (Fig. 4C). It is important that the vagina comes into contact with the coccygeus–sacrospinous ligament and no suture bridge exists, especially if delayed absorbable sutures are being used. While tying these sutures, it may be useful to perform a rectal examination to detect any suture bridges; 9) after these sutures are tied, an anti-incontinence procedure (if needed) and a posterior colpoperineorrhaphy are completed, as needed. The vagina is packed with a moist gauze for 24 hours, if desired; and 10) the risk of ureteral obstruction or kinking is extremely low with sacrospinous ligament colpopexy. However, cystourethroscopy should be used if a concomitant enterocele repair, anterior colporrhaphy, or anti-incontinence procedure is performed.

In older women who are having transvaginal colpopexy, if the vagina is not long enough to reach either coccygeus–sacrospinous ligament or if scarring makes it not possible or unsafe to suture into the coccygeus–sacrospinous ligament, then bilateral fixation of the prolapsed vaginal apex to the iliococcygeus fascia just below the ischial spines is a useful and effective technique. It also can be used if the vagina is somewhat foreshortened, but the posterior apex needs additional support during rectocele repair. The technique of this repair involves identifying areas 1–2 cm distal and posterior to the ischial spines in the ileococcygeus muscles and fasciae on each side. We place a single No. 0 delayed absorbable suture deeply into the levator muscle and fascia bilaterally. Both ends of each suture are passed through the ipsilateral posterior vaginal apex and held with a hemostat. The posterior colporrhaphy is then completed, the vagina is closed, and both sutures are tied, elevating the posterior vaginal apex.

Uterosacral Ligament Colpopexy

Another transvaginal approach to the management of apical prolapse is the bilateral uterosacral ligament colpopexy. This surgery is popular in the United States, and it can be performed vaginally, abdominally, or laparoscopically. An advantage is that it suspends the apex of the vagina to the endopelvic fascia, directing it in the midline to the hollow of the sacrum, and thus does not create any significant distortion of the vaginal axis. The technique is as follows: 1) a vaginal hysterectomy is completed and the uterosacral ligaments tagged. If the uterus was previously removed, the vaginal apex is grasped with two Allis clamps and incised with a scalpel. The vaginal epithelium is dissected off the enterocoele sac, and the enterocele is opened. If access cannot be obtained, one may consider performing an extraperitoneal uterosacral ligament colpopexy; 2) several moist tail sponges are placed in the posterior cul-de-sac. A wide Deaver or Breisky retractor is used to elevate the packs and the intestines out of the operative field; 3) the ischial spines are palpated transperitoneally. The remnants of the uterosacral ligaments are found posterior and medial to the ischial spine, and the ureter can sometimes be palpated or visualized along the pelvic side wall anywhere from 2–5 cm ventral and lateral to the ischial spine; 4) traction on Allis clamps placed on the distal vaginal edges at approximately 5 and 7 o’clock allows easy palpation of the uterosacral ligaments. We usually place a long Allis clamp on the proximal uterosacral ligament just lateral to the rectum to help identify strong tissue for suture placement (Fig. 5A); 5) two to three delayed absorbable or nonabsorbable sutures are passed through the ligament on each side (Fig. 5B). To assure adequate vaginal length, the highest suture should be at least to the level of the ischial spine. It is uncertain if nonabsorbable sutures provide higher rates of cure; they do however result in more suture erosions10; 6) the distal remnants of the uterosacral
ligaments may be plicated across the midline with one to three permanent sutures as described previously, if desired, thus obliterating the cul-de-sac; 7) if necessary, an anterior colporrhaphy is performed and the anterior vaginal epithelium is closed; 8) the delayed absorbable sutures that had been passed high up through the uterosacral ligaments are then passed through the full thickness of the anterior and posterior vaginal walls at the apex (Fig. 5B); 9) the vagina is trimmed and closed with a No. 2-0 delayed absorbable suture; 10) tying of the apical suspension sutures elevates the vagina high up into the hollow of the sacrum (Fig. 5C); and 11) cystoscopy is performed after administration of indigo carmine to assure ureteral patency.

Obliterative Procedures

If the patient is older and no longer sexually active and does not have plans to have vaginal intercourse in the future, a vaginal obliteratorive procedure may be appropriate. Obliterative procedures can be performed for posthysterectomy vaginal apex prolapse (partial colpectomy) and uterovaginal prolapse (Le Fort colpocleisis). The uterus can be left in situ like with the Le Fort procedure or a concurrent hysterectomy can be done before a colpectomy; both options are associated with a relatively quick operative time and low morbidity. These procedures significantly narrow and shorten the vagina; they have a very low rate of prolapse recurrence and are associated with high patient satisfaction.20

For patients with posthysterectomy vaginal vault prolapse, a partial colpectomy and colpocleisis can be done to effectively treat the prolapse. The technique is as follows: 1) to perform this operation for complete vaginal vault eversion, the prolapse is separated into panels using a marking pen (Fig. 6A). The vaginal epithelium is infiltrated with dilute local anesthetic and epinephrine. A scalpel or electrosurgical device is used to score the vaginal epithelium; 2) the vaginal epithelium is completely excised from the underlying vaginal muscularis and endopelvic fascia (Fig. 6B). The surgeon should leave the maximum amount of muscularis behind on the bladder and rectum. No attempt is made to enter the enterocele sac if present. Hemostasis is an absolute must. A 2-cm to 3-cm rim of epithelium is left circumferentially in the vagina just inside the hymen; 3) a series of purse-string sutures are used to invert the prolapsed tissue (Fig. 6C). We place the most distal suture first and the surgical assistant reduces the tissue in the center of the purse-string cephalad while the surgeon ties the purse-string suture. A hemostat is placed at the knot of the suture and an additional purse-string is placed and tied. Three to five purse-string sutures of delayed absorbable or permanent monofilament suture are typically required to reduce a large prolapse; 4) a small anterior colporrhaphy is performed if needed; 5) to reduce the genital hiatus, a large diamond of vaginal epithelium is removed from the posterior vaginal wall and introitus; 6) a posterior colporrhaphy, levator plication, and aggressive perineorrhaphy are performed and the vagina closed (Fig. 6D); 7) a sling (if indicated) is performed; and 8) we recommend routine cystoscopy after intravenous injection of indigo carmine to document ureteral patency.

For patients with uterovaginal prolapse who do not desire hysterectomy or for those in whom hysterectomy is too risky, the technique of Le Fort colpocleisis is appropriate. Traction is placed on the cervix to evert the vagina, and the vaginal epithelium is
injected with dilute local anesthetic and epinephrine just below the epithelium. A Foley catheter with a 10-mL balloon is placed in the bladder for identification of the bladder neck. A marking pen is used to mark out anterior and posterior panels that mirror each other and are to be de-epithelialized. Anteriorly this extends 2 cm from the tip of the cervix to 4–5 cm below the external urethral meatus. The marked areas are removed by sharp dissection. After reducing the cervix, the cut edges of the anterior and posterior vaginal walls are sewn together with interrupted delayed absorbable sutures, creating epithelium-lined tunnels bilaterally. The uterus and vaginal apex thus are gradually turned inward. After the vagina has been inverted, the superior and inferior margins of the incisions are sutured together. A perineorrhaphy with a distal levator plication should be done to narrow the introitus and build up the perineum.20

OUTCOMES OF TRANSVAGINAL PROCEDURES

Although there is a wealth of experience and observational studies on transvaginal repair of apical prolapse, there are surprisingly few high-quality cohort studies with long follow-up or randomized trials comparing the different transvaginal repairs. The results of McCall culdoplasty were discussed in a review article by Sze and Karram.21 Of the early studies reporting 367 patients, 322 (88%) received postoperative follow-up ranging from 1 to 12 years with a cure rate of 88–93%. A subsequent study by Webb et al22 reported results on 660 women, most of whom were followed up with...
a questionnaire. Approximately 12% of patients complained of a “bulge” or “protrusion” at the time of questioning, 82% indicated that they were satisfied, and 22% of sexually active women reported dyspareunia.

Early cohort studies of sacrospinous ligament and ileococcygeus colpopexy show the operations to be effective for vaginal apex support, but vaginal prolapse recurs with time, most commonly the anterior wall. With a 73-month follow-up in 243 patients who had had sacrospinous ligament colpopexy and vaginal repairs, Paraizo et al showed prolapse recurrence in the anterior, posterior, and apical segments to be 37.4%, 13.6%, and 8.2%, respectively. Prolapse-free survival rates at 1, 5, and 10 years were 88.3%, 79.7%, and 51.9%, respectively. From 1981 to 1993, Shull et al and Meeks et al used the iliococcygeus muscle or ischial spine. This can result in hemorrhage because the transvaginal repairs are relatively safe and few related complications require reoperation.

COMPLICATIONS OF TRANSVAGINAL PROCEDURES

All of the transvaginal surgeries involve dissection of vesicovaginal and rectovaginal spaces and thus have small risks of bleeding and of cystotomy and proctotomy. Postoperatively, vaginal or pelvic infections, voiding difficulties, and urinary tract infections can occasionally occur but are short-lived. The most worsome complication with McCall culdoplasty, uterosacral ligament colpopexy, and colpectomy or colpocleisis is ureteral injury or kinking. The risk is approximately 2–4%, and most obstructions are relieved intraoperatively if recognized at cystoscopy. It is imperative that intraoperative cystoscopy is performed after tying the colpopexy sutures to ensure ureteral patency. If ureteral spill is not observed, then the suspension sutures on that side should be cut and removed and the ureter reevaluated. Often, the suture can be replaced using a more medial placement into the uterosacral ligament complex.

Unique but serious intraoperative complications can occur, especially with sacrospinous colpopexy. Potential complications of the procedure include hemorrhage, nerve injury, and rectal injury. Severe hemorrhage with blood transfusion can result from overzealous dissection superior to the coccygeus muscle or ischial spine. This can result in hemorrhage from the inferior gluteal vessels, hypogastric venous plexus, or pudendal vessels. Hemorrhage from these vessels can be difficult to control. For this reason, we prefer limited careful dissection on top of (but not behind) the coccygeus–sacrospinous ligament. We also use the transvaginal suture-capturing device technique in which the needle tip is passed downward toward the muscle rather than the technique using the Deschamps ligature carrier in which the needle tip is passed superiorly toward the vasculature. If severe bleeding occurs in the area around the coccygeus muscle, we recommend initially packing the area. If this does not control the bleeding, then visualization, attempted ligation with clips or sutures, and use of thrombin products should be performed. This area is difficult to approach transabdominally or with selective embolization, so bleeding should be controlled vaginally, if possible.

Moderate-to-severe buttock pain on the side on which the sacrospinous suspension was performed can occur; this has also been reported after high
uterosacral suspension. This is probably caused by compression or injury of a small nerve that runs through the coccygeus–sacropinous ligament. The buttock pain is almost always self-limiting and should resolve completely by 6 weeks postoperatively. Reassurance and anti-inflammatory agents usually are all that are necessary. Because of the close proximity of the pudendal nerves (and vessels) to the lateral coccygeus–sacropinous ligament, the potential for injury is present so dissection and suturing should avoid the ischial spine. If pudendal nerve injury occurs with postoperative symptoms of unilateral vulvar pain, numbness, or pain and numbness, immediate reoperation with removal of offending suture material may be necessary.

Rectal examination should be performed frequently during all transvaginal repairs because of the close proximity of the rectum to vaginal dissection and colpopexy sutures. Rectal injury can occur during entering of the peri rectal space as well as during mobilization of tissue off of the coccygeus–sacropinous ligament. If a rectal injury is identified, it can usually be repaired primarily transvaginally by conventional techniques. Small bowel obstruction has also been reported after transvaginal colpopexy but is rare.

Vaginal stenosis and dyspareunia can occur if too much anterior and posterior vaginal wall tissue is trimmed, if the vagina is left too short, or if too tight a posterior colporrhaphy is performed. We recommend postoperative use of estrogen vaginal cream in these patients in the hope of preventing or decreasing the incidence of this problem.

TRANSVAGINAL MESH PROCEDURES

In 2004, prepackaged kits to place mesh transvaginally were introduced. Most kits use trocars to attach mesh or graft to the arcus tendinous fasciae pelvis or sacropinous ligaments bilaterally. With bilateral attachments, these grafts create a hammock that supports the apex and anterior or posterior walls, depending on placement. The goals of these procedures are to decrease the rate of recurrent prolapse by adding a graft to bolster native tissue and to decrease complications by avoiding intra-abdominal surgery. On introduction into the market, there were many different brands and types of graft kits, yet data for specific prototypes were few.

Given the relatively recent introduction of these procedures, case series and retrospective trials outnumber randomized controlled trials, and the available randomized controlled trials have shorter-term follow-up. Few studies have specifically addressed vaginal apex prolapse and most data detail outcomes after mesh-augmented repair of the anterior vaginal wall. The largest randomized controlled trial to date comparing anterior colporrhaphy with an anterior mesh kit demonstrated that compared with anterior colporrhaphy, the use of an anterior mesh kit results in improved 1-year objective and subjective outcomes but higher rates of surgical complications and postoperative adverse events including mesh exposure and de novo stress urinary incontinence. The updated Cochrane Review on the subject reviewed outcomes of approximately 4,000 women and revealed that native tissue anterior repair was associated with more anterior compartment failures than polypropylene mesh repair as an overlay or armed transobturator mesh kit, but there were no differences in subjective outcomes, quality-of-life data, or rates of de novo dyspareunia, stress urinary incontinence, or reoperation rates for prolapse or incontinence between groups.

In addition to the complications inherent to all transvaginal prolapse repairs, unique complications related to the mesh or trocars can occur. Mesh-related functional complications such as chronic pelvic pain, leg and groin pain, vaginal pain, and dyspareunia have all been reported. A systematic review that evaluated complications and reoperations after vaginal apex surgical repair demonstrated that the overall rate of reoperation (for complications and for recurrent prolapse) is highest after transvaginal mesh repair. Exposure of mesh through the vaginal epithelium has been one of the most common complications with the Cochrane Review reporting an overall erosion rate of 10%. At least half of mesh exposures are symptomatic and require reoperation for treatment.

As a result of the type of U.S. Food and Drug Administration (FDA) approval transvaginal mesh kits received, the high number of complications encountered in a relatively short time, and the lack of superior clinically significant prolapse symptom outcomes, the FDA issued a Public Health Notice in 2008 and a Safety Communication in 2011. These documents state that “serious complications associated with surgical mesh for transvaginal repair of POP are not rare” and “it is not clear that transvaginal POP repair with mesh is more effective than traditional non-mesh repair” and makes recommendations for the physician (Box 2). The FDA has reclassified how these procedure kits will be approved for use and is requiring additional outcome data before FDA approval. As a result, some mesh prolapse kits in which a trocar passed through the obturator foramen were voluntarily withdrawn from the market. The prepackaged vaginal mesh kits currently available attach mesh mainly to the sacrospinous ligament. Given the uncertain future of transvaginal mesh
and the variety of brands and techniques available, we do not describe a specific technique.

Many experts believe that a role for transvaginal mesh exists given the risk of recurrent prolapse after native tissue repairs. The American College of Obstetricians and Gynecologists and the American Urogynecology Society recommend the following:

1) POP vaginal mesh repair should be reserved for high-risk individuals in whom the benefit of mesh placement may justify the risk such as individuals with recurrent prolapse (particularly of the anterior compartment) or with medical comorbidities that preclude more invasive and lengthier open and endoscopic procedures; 2) surgeons placing vaginal mesh should undergo training specific to each device and have experience with reconstructive surgical procedures and a thorough understanding of pelvic anatomy; 3) compared with existing mesh products and devices, new products should not be assumed to have equal or improved safety and efficacy unless long-term clinical data are available; and 4) patients should provide their informed consent after reviewing the risks and benefits of the procedure and after discussing alternative repairs.

Long-term outcome data after mesh-augmented and native tissue vaginal repairs are lacking and what are available demonstrate the need for improved outcomes and fewer complications. This can only be achieved with adequately powered randomized controlled trials with long-term outcomes that include prolapse symptoms and anatomic and functional outcomes.

ABDOMINAL SACRAL COLPOPEXY

Techniques

Abdominal sacral colpopexy can be performed through a laparotomy or by laparoscopy or robot-assisted laparoscopy. Although the surgical approach may be

Box 2. U.S. Food and Drug Administration Recommendations Regarding the Placement of Transvaginal Mesh for Prolapse

Training
- Obtain specialized training for each mesh placement technique and be aware of the risks of surgical mesh.

Patient Selection
- Recognize that, in most cases, pelvic organ prolapse can be treated successfully without mesh, thus avoiding the risk of mesh-related complications.
- Choose mesh surgery only after weighing the risks and benefits of surgery with mesh compared with all surgical and nonsurgical alternatives.
- Consider these factors before placing surgical mesh:
 - Surgical mesh is a permanent implant that may make future surgical repair more challenging.
 - Having a mesh surgery may put the patient at risk for requiring additional surgery or for the development of new complications.
 - Removal of mesh as a result of mesh complications may involve multiple surgeries and significantly impair the patient’s quality of life. Complete removal of mesh may not be possible and may not result in complete resolution of complications, including pain.
 - Mesh placed abdominally for prolapse repair may result in lower rates of mesh complications compared with transvaginal prolapse surgery with mesh.

Informing Your Patient
- Inform patients that implantation of surgical mesh is permanent and that some complications associated with the implanted mesh may require additional surgery that may or may not correct the complication.
- Inform patients about the potential for serious complications and their effect on quality of life, including pain during sexual intercourse, scarring, and narrowing of the vaginal wall in prolapse repair.
- Inform the patient about the benefits and risks of nonsurgical options, nonmesh surgery, surgical mesh placed abdominally and the likely success of these alternatives compared with transvaginal surgery with mesh.
- Notify the patient if mesh will be used in her prolapse surgery and provide the patient with information about the specific product used.
- Ensure that the patient understands the postoperative risks and complications of mesh surgery as well as limited long-term outcomes data.
- Provide patients with a copy of the patient labeling from the surgical mesh manufacturer if available.

different, the steps of the procedure should remain the same. Sacral colpopexy, which is suspension of the vagina to the sacral promontory using a bridging graft through the abdominal approach, is an effective treatment for uterovaginal and vaginal apex prolapse. Many different materials have been used as a graft in sacral colpopexy, including biologic materials (fascia lata, rectus fascia, dura mater) and synthetic materials (polypropylene mesh, polyester fiber mesh, polytetrafluoroethylene mesh, Dacron mesh, and Silastic silicone rubber). Large-pore, lightweight polypropylene mesh is most commonly used and likely has fewer complications compared with other synthetics because of its monofilament and macroporous characteristics.

A randomized trial comparing objective anatomic outcomes after sacral colpopexy performed with cadaveric fascia lata and polypropylene mesh noted polypropylene mesh to be superior to fascia lata in terms of POP-Q points, POP-Q stage, and objective anatomic failure rates at 1 and 5 years after surgery.36,37

The technique of abdominal sacral colpopexy using graft placement is as follows: 1) the patient should be placed in low lithotomy using Allen stirrups so that the surgeon has digital access to the vagina during the operation. A sponge stick or end-to-end anastomosis sizer can be placed in the vagina for manipulation of the apex. A Foley catheter is placed into the bladder for drainage. See Box 3 for tips for minimally invasive sacral colpopexy; 2) intraperitoneal access is gained using laparoscopic or robotic cannula placement as shown in Figure 7A and B. The small bowel is placed or packed into the upper abdomen, and the sigmoid colon is deviated to the left pelvis as much as possible. The ureters are identified bilaterally for their entire course; 3) attention is turned to the sacrum. The aortic bifurcation, the common and internal iliac vessels, the sigmoid colon, and the right ureter are identified so that these structures can be avoided (Fig. 8B). The left common iliac vein is medial to the left common iliac artery and is particularly vulnerable to damage during this procedure. A longitudinal incision is made in the peritoneum over the sacral promontory; 4) the bony sacral promontory and anterior longitudinal ligament are directly visualized for approximately 4 cm by using blunt and sharp dissection through the subperitoneal fat. We take special care to avoid the delicate plexus of presacral veins that are often present, especially as one dissects more caudally. The middle sacral artery and vein should be identified (Fig. 8B) and avoided; 5) dissection of the peritoneum and subperitoneal fat caudally may be used to create a subperitoneal tunnel into the cul-de-sac so that the graft can be covered with peritoneum after attaching it to the sacrum. Alternatively, the incision over the sacral promontory can be extended toward the vaginal apex sharply. During these processes, the rectum and right ureter are visualized at all times and the course of the dissection is located between these structures; 6) the vagina is elevated cephalad using a sponge stick or end-to-end anastomosis sizer (also known as an

Box 3. Tips for Performing Minimally Invasive Sacral Colpopexy

- Patient positioning is critical.
 - Place egg crate or other antislip device directly below patient to prevent movement during the operation.
 - Position buttocks slightly beyond end of table so vaginal manipulation is possible.
 - Both arms are tucked and protected.
 - Once intra-abdominal access is gained, steep Trendelenburg positioning helps move the small bowel into the upper abdomen.
- Two knowledgeable assistants are necessary:
 - One works intra-abdominally and helps with retraction.
 - One works vaginally and manipulates the vagina and rectum to optimize visualization.
- Side-dock the robot, either parallel or at a 45° angle to the table.
- Placement of ports is integral to procedure success (Fig. 7A–B).
- Assure there is enough space between the robot arms to prevent collision.
- If the colon is redundant, an epiploica can be sutured temporarily to the left anterior abdominal wall to improve visualization.
- If hysterectomy is planned, a supracervical hysterectomy should be considered because the cervix may help to decrease future mesh erosions. Alternatively, a vaginal hysterectomy can be performed before a laparoscopic repair.
- Given the lack of tactile feedback in robotic surgery, identification of the sacral promontory can be challenging. Using laparoscopy initially, this area can be identified and marked with cautery before docking the robot.
- Care should be taken to avoid the intervertebral disc while placing the sacral sutures. Deep stitches through the disc and periosteum should be avoided as cases of osteomyelitis have been reported after robotic sacral colpopexy.
- A barbed suture can be used to close the peritoneum.
- Convert to laparotomy when necessary. Patient safety is of utmost importance.
Box 4. Answers to Key Questions About Treating Pelvic Organ Prolapse

Is the patient sexually active and is she interested in having vaginal intercourse in the future?

If the patient is or plans to be sexually active, a prolapse repair with apical suspension is appropriate. If the patient is older and is no longer sexually active and does not have plans to have vaginal intercourse in the future, an obliterator procedure may be offered. Although these procedures significantly narrow and shorten the vagina, they have a very low rate of prolapse recurrence and are associated with a high rate of patient satisfaction. Consent of an informed patient is important in this situation.

If the uterus is present, should a hysterectomy be done at the time of her prolapse repair?

Most prolapse operations intended to suspend the vaginal apex can be done with or without hysterectomy, although some important modifications are sometimes necessary. Uterine-sparing procedures are not appropriate for women with a history of cervical dysplasia, abnormal or postmenopausal bleeding, or those who are at high risk for uterine malignancy. It is reasonable to discuss the issue of concurrent hysterectomy with affected patients before surgery for prolapse, including pertinent risks and benefits, and allow her to share in the decision.

Should the prolapse repair be done through the transvaginal or abdominal route and, if abdominally, should it be done using laparotomy, laparoscopy, or robotic assistance?

The surgical approach to prolapse repair can vary and several choices may be appropriate for any specific patient. Extent and type of prolapse, surgical history, concurrent pathology (eg, ovarian mass, rectal prolapse), age, health status, surgeon experience, and patient preference are important considerations when making this decision. Few studies actually show superiority of one surgery over another for vaginal apex prolapse repair. The Cochrane Review noted that abdominal sacral colpopexy results in fewer apical prolapse recurrences and fewer cases of dyspareunia but has longer operating times and higher costs. However, overall reoperation rates (for recurrences and complications) may not be that much different between these surgeries.

Individual surgeon experience, especially for vaginal, laparoscopic, and robotic surgery, is an important predictor of successful outcome. Regarding the recent increase in robot use to assist prolapse surgery, it is often done as physician, patient, or both preference although data are still preliminary supporting its use.

Within reason, an informed patient may influence the route and type of prolapse surgery by preferring one route over another after careful consideration of the advantages and disadvantages of each type of repair. The surgeon could then use this information in the consent process to agree with the patient on the best route of surgery for her particular disease and circumstances.

Box 4. Answers to Key Questions About Treating Pelvic Organ Prolapse (continued)

Can the prolapse surgery be done by repairing the patient’s own native tissues or is a graft necessary to suspend the apex or other segments of the vaginal walls?

A graft is necessary to correctly perform a sacral colpopexy. For transvaginal repairs, this question has not been answered adequately by research studies and opposing opinions exist among experts. Given the increased risk of graft exposure and lack of long-term data, it may be reasonable to reserve these operations for women at highest risk for prolapse recurrence: those with a previous failed repair and those with severe prolapse.

Is a concurrent procedure to correct overt or occult stress urinary incontinence necessary?

De novo stress urinary incontinence occurs when a previously continent patient develops symptoms of stress urinary incontinence after prolapse repair. These symptoms are extremely bothersome for a patient and are not uncommon. Adding an anti-incontinence procedure at the time of prolapse repair significantly reduces the incidence of later stress urinary incontinence. Before surgery, having the patient perform a standing, cough stress test with a full bladder while the prolapse is reduced (with large swabs, a pessary, or other instrument) may help predict who will best benefit from an anti-incontinence procedure.

Should I refer this surgery to a specialist in Female Pelvic Medicine and Reconstructive Surgery?

The answer to this question will vary greatly depending on surgeon confidence, surgical training and experience, and the availability of urogynecology specialists. In cases of recurrent prolapse, complex urinary and fecal functional symptoms, severe prolapse, and other complex situations, referral may be prudent. In complex cases when referral is not possible as a result of geographical and insurance restrictions, working with a urologist or colorectal surgeon may be helpful.

“EEA sizer”), the peritoneum over the vaginal apex is incised transversely, and the bladder dissected from the anterior vaginal wall sharply for approximately 4 cm or until the entire defect is exposed (Fig. 8A). If this plane is difficult to establish, the bladder can be retrograde filled with fluid to delineate its border; 7) the peritoneum over the posterior vaginal wall into the cul de sac is incised and dissected for 4–6 cm or until the entire defect is exposed. If it is difficult to delineate the rectum, a second end-to-end anastomosis sizer can be placed in the rectum. Manipulating the end-to-end anastomosis sizers in the vagina and rectum so that the tips are apart can define the rectovaginal septum. This may assist in finding the areolar tissue, which is easiest and safest to dissect. Some experts recommend dissection to the perineal body. We prefer to reserve this for...
women with rectal prolapse or severe defecatory dysfunction, because a permanent graft in the distal vagina can be problematic and does not increase symptomatic improvement for the average patient. We routinely evaluate the distal posterior vagina after sacral colpopexy and use a native tissue repair if indicated; 8) a graft is prepared. We recommend a lightweight polypropylene mesh. If this comes in a sheet, two strips measuring $4 \times 15 \text{ cm}$ can be created. Alternatively, a prefabricated “Y mesh” can be used. The graft is attached to the posterior vaginal wall with 5–8 nonabsorbable No. 0 or 2-0 sutures 1–2 cm apart. Sutures are placed through the full fibromuscular thickness of the vaginal wall but not into the vaginal lumen. The graft should extend approximately halfway down the length of the posterior vaginal wall (Figs. 8C and 9); 9) a second piece of graft is attached to the proximal anterior vaginal wall in a similar fashion. Delayed absorbable sutures are used for the most distal stitches on this compartment given the proximity to the bladder and the potential for suture erosion (Figs. 8C and 9); 10) the vagina is elevated with the end-to-end anastomosis sizer and deviated toward the sacral promontory. The appropriate amount of vaginal elevation should
provide full apical support without undue tension on
the vagina. The graft should be trimmed to the appro-
priate length. Using a stiff but small half-curved tapered
needle with permanent No. 0 suture, two to four su-
tures are used to attach the mesh to the anterior longi-
tudinal ligament of the sacrum (Fig. 9); 11) the
peritoneum is then closed over the exposed graft with
absorbable suture (Fig. 8D); 12) a Burch colposuspen-
sion or other anti-incontinence procedure, if planned, is
completed. Cystoscopy is performed after the admin-
istration of indigo carmine to evaluate bladder integrity
and to verify ureteral patency; and 13) posterior
colporrhaphy and perineoplasty are performed if
needed to treat the remaining rectocele and perineal
defect.

Outcomes

A review of abdominal sacral colpopexy noted the
success rate when defined as lack of apical prolapse
postoperatively ranging from 78–100%.

The median reoperation rates for POP and for stress urinary inco-
tinence in the studies that reported these outcomes were
4.4% (range 0–18.2%) and 4.9% (range 1.2–30.9%),
respectively. A randomized controlled trial of sacral col-
popexy with and without concomitant Burch colposus-
pension had reassuring anatomic outcomes at 2-year
follow-up with 95% of patients having excellent objec-
tive outcomes for the vaginal apex (within 2 cm of total
vaginal length), 2% demonstrating stage III prolapse,
and 3% undergoing reoperation for prolapse. These
patients also demonstrated improved urinary, defeca-
tory, and sexual function based on validated question-
naires. A long-term study, in which patients who had
undergone sacral colpopexy at least 10 years prior were
contacted and asked about prolapse symptoms and
reoperations, demonstrated that even graft-augmented
repairs deteriorate over time. At an average of 14-year
follow-up, sacral colpopexy had a 26% failure rate based
on reoperation (10.5%) and prolapse symptoms (16%).
The Cochrane Review showed that, based on three ran-
domized trials against sacrospinous ligament colpopexy,
abdominal sacral colpopexy had a lower rate of recur-
rent apical prolapse and less postoperative dyspareunia
but longer operating time and higher cost.

Complications

Intraoperative complications during sacral colpopexy
are uncommon but can be life-threatening. Most
complications reported after sacral colpopexy tend to
be similar to those of other abdominal operations,
including hemorrhage, enterotomy, ureteral damage,
cystotomy, proctotomy, and extrafascial wound infec-
tions. Complications unique to minimally invasive
sacral colpopexy include corneal abrasion, extensive
subcutaneous emphysema, and hypercarbia. The steep
Trendelenburg positioning and long operative times
are thought to contribute to these complications. Life-
threatening bleeding from the presacral space is one of
the most feared complications of sacral colpopexy.
When there is bleeding from presacral vessels, hemo-
stasis can be difficult to achieve because of the
complex interlacing of the venous network both
beneath and on the surface of the sacral periosteum.
When these veins have been damaged, they can retract
beneath the bony surface of the anterior sacrum and
recede into the underlying channels of cancellous
bone. Communications with adjacent pelvic veins,
especially the left common iliac vein, can be particu-
larly troublesome. If direct pressure and packing fails
to control the bleeding, sutures, metallic clips, cautery,
and bone wax should be used. If these measures are
not successful, sterilized stainless steel thumbtacks can
be placed on the retracted bleeding presacral vein to
treat life-threatening hemorrhage.

Longer-term postoperative complications include
small bowel obstruction, hernia, and erosion of
implanted materials. The median rate of small bowel
obstruction requiring surgery has been reported as
1.1% (range 0.6–8.6%), which is similar to the rate of
small bowel obstruction encountered in prospective
studies. Although rare, nerve injuries and sacral
osteomyelitis have been reported.
The most common long-term complication is erosion of synthetic mesh or suture through the vagina, which occurs in 6% of cases at 2-year follow-up. This rate is likely underestimated, because most studies do not have long enough follow-up or routine examinations designed to evaluate this complication. Cigarette smoking and concurrent hysterectomy each increase the risk of mesh erosion by an odds ratio of 5. When mesh erosions are encountered, conservative treatment with vaginal estrogen should be a first-line treatment. If the patient is asymptomatic, observation can be considered. However, most patients with this complication require partial removal of the mesh and closure of the defect in the vagina.

Surgical Approaches: Vaginal Compared with Laparotomy, Laparoscopy, and Robot

To date, there is little scientific evidence available to base the decision on which route of surgery to perform for advanced uterovaginal or postsurgical vaginal vault prolapse. There are three randomized controlled trials to date comparing abdominal sacral colpopexy with sacrospinous ligament suspension, which have varying definitions of surgical success. The Cochrane Database Review noted abdominal sacral colpopexy to be associated with lower rates of recurrent apical prolapse and dyspareunia than the vaginal sacrospinous colpopexy. These benefits must be balanced against a longer operating time, longer time to return to activities of daily living, and increased cost of the abdominal approach.

Minimally invasive sacral colpopexy includes conventional laparoscopy and robot-assisted laparoscopy. Cohort studies demonstrate similar anatomic, objective, and subjective outcomes among all approaches. To date, one randomized controlled trial exists comparing outcomes between the conventional laparoscopic and the robot-assisted laparoscopic approach. Sacral colpopexy with robot-assisted laparoscopy demonstrated increased operative times and cost as well as increased pain and pain medication use in the first 6 weeks compared with conventional laparoscopy.

Although robot assistance may not have an advantage over conventional laparoscopy in the hands of expert laparoscopists, it has allowed many surgeons to offer minimally invasive sacral colpopexy, which is associated with faster recoveries and shorter hospital stays compared with laparotomy. Additional well-designed studies are needed to clarify the robot’s role in sacral colpopexy.

The surgical approach to prolapse repair can vary and several choices may be appropriate for any specific patient. Extent and type of prolapse, surgical history, concurrent pathology (eg, ovarian mass, rectal prolapse), age, health status, surgeon experience, and patient preference are important to consider when making this decision. Individual surgeon experience, especially for vaginal, laparoscopic, and robotic surgery, is an important predictor of successful outcome. For example, performance of laparoscopic hysterectomy by experienced high-volume surgeons at high-volume hospitals is associated with less blood loss, fewer adverse events, and lower costs. Regarding the recent increase in robot use to assist prolapse surgery, it is often done as physician preference although data are still preliminary supporting its use.

Special surgical considerations related to the patient’s preferences occasionally influence the route of prolapse surgery. Within reason, an informed patient may influence the route and type of prolapse surgery by preferring one route over another after careful consideration of the advantages and disadvantages of each type of repair. The surgeon could then use this information in the consent process to agree with the patient on the best route of surgery for her particular disease and circumstances.

Uterine Preservation During Surgery for Uterovaginal Prolapse

Hysterectomy is done almost routinely in the United States at the beginning of all surgical repairs for uterine and uterovaginal prolapse. Often, uterine preservation in women with uterovaginal prolapse is only considered if future fertility is desired. However, there has been a recent questioning of this practice in the United States, especially because gynecologists (and patients) in many other countries do not routinely prefer hysterectomies in prolapse repairs. More women are requesting uterine preservation for many other reasons, including issues of sexuality, body image, cultural preferences, and the concern for earlier-onset menopause after hysterectomy.

Vaginal, abdominal, and laparoscopy techniques for hysteropexy have all been described, although many questions related to hysteropexy remain unanswered. A review on this topic by Ridgeway et al concluded that uterine preservation during surgery for uterovaginal prolapse may be an option in appropriately selected women who desire it, although prospective randomized trials are needed to corroborate this. Studies have reported reassuring results with laparoscopic suture hysteropexy and sacrospinous...
SUMMARY AND FUTURE DIRECTIONS

The prevalence of vaginal prolapse appears to be increasing. Because the prevalence of POP increases with age, the changing demographics of the world’s population will result in even more affected women. Demographic studies project that by 2050, 58.2 million women will have at least one pelvic floor disorder, including 41.3 million with urinary incontinence and 9.2 million with prolapse. This would result in approximately 310,000 stress urinary incontinence procedures and 246,000 prolapse operations annually.

Over the last 25 years, the field of female pelvic medicine and reconstructive surgery has evolved significantly. Thanks to continued research efforts, our understanding of pathogenesis, risk factors, and treatment outcomes of pelvic floor disorders has progressed considerably. This has culminated in a newly organized subspecialty within the American Board of Obstetrics and Gynecology and American Board of Urology, which aims to continue to provide education and sound scientific data to respond to the many unanswered questions that remain in this field.

Although a board-certified subspecialty increases the likelihood that a woman seeking treatment for POP will be offered valid treatment options, many women will not have access to subspecialty care. Given the staggering projections of pelvic floor disorders, many generalist obstetrician–gynecologists will be caring for these women. What these surgeons will offer to women will depend on surgical training and experience, confidence, and geographic location. Given that vaginal apex support contributes significantly to the support of all segments, it will be critical that surgeons who perform surgical repair of POP are comfortable and proficient with vaginal apex suspensions as described in this article. In cases of recurrent prolapse, transvaginal mesh complications, complex urinary and fecal functional symptoms, and severe prolapse, referral to a surgical subspecialist may be prudent.

The increased prevalence of prolapse also is probably a result of inadequate recognition and repair of pelvic organ support defects when pelvic surgery has already been performed. The standard use of cul-de-sac obliteration and uterosacral ligament suspension to provide appropriate support of the vaginal apex at the time of hysterectomy for other indications would most likely decrease the incidence of later enterocele and posthysterectomy vaginal apex prolapse.

Efforts to decrease recurrences after prolapse surgeries are paramount to improving care to our patients. We suggest using transvaginal apical repairs for older patients, those with primary and less severe prolapse, and those with comorbidities that might increase surgical risk. Younger women, those with more severe prolapse or recurrences after vaginal surgery, and women with prolapsed, short vaginas might benefit from sacral colpopexy with mesh, preferably by a minimally invasive route. If the patient is older and no longer sexually active and does not desire to have vaginal intercourse in the future, a vaginal obliterator procedure may be appropriate and is very effective. More education and research into the understanding of the anatomy of pelvic support and the pathogenesis of prolapse and in the principles of pelvic and vaginal reconstructive surgery are needed to improve care to all affected women. More high-quality comparative surgical trials are badly needed as is more information about the pros and cons of surgical innovations such as vaginal grafts and the use of the surgical robot.

REFERENCES

Surgical Treatment of Vaginal Apex Prolapse

42. Benson JT, Lucente V, McClellan E. Vaginal versus abdominal reconstructive surgery for the treatment of pelvic support
374 Walters and Ridgeway Surgical Treatment of Vaginal Apex Prolapse

OBSTETRICS & GYNECOLOGY

Continuing Medical Education Credits Available for the Clinical Expert Series

Continuing medical education (CME) credits are available for reading the Clinical Expert Series. Visit http://www.greenjournal.org and click on the “CME” tab to read the articles and complete their associated quizzes.

ACGME Accreditation

The American College of Obstetricians and Gynecologists is accredited by the Accreditation Council for Continuing Medical Education (ACGME) to provide continuing medical education for physicians.

AMA PRA Category 1 Credit(s)™

The American College of Obstetricians and Gynecologists designates this journal-based CME activity for a maximum of 2 AMA PRA Category 1 Credits.™ Physicians should claim only the credit commensurate with the extent of their participation in the activity.

College Cognate Credit(s)

The American College of Obstetricians and Gynecologists designates this journal-based CME activity for a maximum of 2 Category 1 College Cognate Credits. The College has a reciprocity agreement with the AMA that allows AMA PRA Category 1 Credits™ to be equivalent to College Cognate Credits.

Walters and Ridgeway Surgical Treatment of Vaginal Apex Prolapse

OBSTETRICS & GYNECOLOGY

Continuing Medical Education Credits Available for the Clinical Expert Series

Continuing medical education (CME) credits are available for reading the Clinical Expert Series. Visit http://www.greenjournal.org and click on the “CME” tab to read the articles and complete their associated quizzes.

ACGME Accreditation

The American College of Obstetricians and Gynecologists is accredited by the Accreditation Council for Continuing Medical Education (ACGME) to provide continuing medical education for physicians.

AMA PRA Category 1 Credit(s)™

The American College of Obstetricians and Gynecologists designates this journal-based CME activity for a maximum of 2 AMA PRA Category 1 Credits.™ Physicians should claim only the credit commensurate with the extent of their participation in the activity.

College Cognate Credit(s)

The American College of Obstetricians and Gynecologists designates this journal-based CME activity for a maximum of 2 Category 1 College Cognate Credits. The College has a reciprocity agreement with the AMA that allows AMA PRA Category 1 Credits™ to be equivalent to College Cognate Credits.